

Idam Infrastructure Advisory Pvt. Ltd.

Intra-state DSM Mechanism: Comparison across States

A Three-day Residential Course on "Power Market and Impact of Renewables and Electric Vehicles" at IIT Kanpur

2 May, 2018

Ajit Pandit

Director,

Idam Infrastructure Advisory Pvt. Ltd

Contents

- DSM framework at regional level : historical developments
- Intra-state Balancing & Settlement : Mandate and status update
- Objectives of DSM mechanism at State level
- Important Steps for implementation of DSM at state level
- Why RE Forecasting & Scheduling?
- Regulatory development for introduction of F&S regime
- Central level development of F&S Framework
- Status update on F&S Regulations for RE rich states
- Discussion Points and Way forward

Context setting

- Basics of ABT / DSM mechanism
- Objectives of ABT
- Key Considerations for ABT

Availability Based Tariff (ABT) / Deviation Settlement Mechanism (DSM)

- Basics:

- ABT /DSM comprises 3 Part tariff i.e. Fixed Charges, Energy Charges and Deviation charges
- Segregation of accounting of generation and Distribution business is prerequisite for 3 part Tariff.
- Segregation of Account: Station-wise Fixed Cost Comp. for capacity charge determination

Enabling Provisions :

- S. 32 of the EA, 2003,
- S. 5.7.1 (b) of NEP, 2005, S. 6.2 (1) of Tariff Policy 2006 & 2016,
- Reg. 6.4.1 of IEGC 2010,
- Recommendations of the FoR June 2006 and 2008,

Applicability and Coverage: :

- Generating Stations Thermal, Hydel, Renewable
- Distribution Licensees, Deemed Distribution Licensees (SEZs, Railways)
- Open Access Users (TOAUs / DOAUs) and (Full OA Users and Partial OA Users)
- Captive Users (Captive Wheeled, In-Situ)

- Objectives
- Secure and reliable grid operations
- Eencouraging higher availability of Generation
- Instill forecasting and load management discipline amongst Discoms, load serving entities and OA consumers
- Ensure **despatch discipline amongst generators** based on economic/ merit order principles
- Serve as a balancing mechanism within the state
- Facilitate energy accounting and deviation settlement in transparent manner

Maximum and Minimum Frequency Profile⁷

⁷ – Based on ER / NEW Grid DataSource : POSOCO and CERC

Maximum and Minimum Frequency Profile Southern Region⁸

⁸ – Based on SR Grid Data till Dec'14 and All India Grid data thereafter Source : POSOCO and CERC

- Introduced in various regions in stages -Western & Northern (2002), Southern & Eastern (2003) and North-Eastern (2003)
- Key benefits Improved grid frequency, Reduced frequency variations, Reduction in interruptions/grid failures

Key Basics of Availability Based Tariff (ABT) / Deviation Settlement Mechanism (DSM)

- Key Considerations
- Ensuring Grid discipline Share of scheduled capacity mgmt at state periphery is ~ 18% to 40% of total capacity/volume handled for intra-state entities. Deviation management (by Volume) for intra-state entities is crucial.
- **Cost Principle** Should not have significant impact on Cost of power in the state power system as a whole.
- Market Development Principle The new system (balancing & settlement) should promote the development of market, i.e., encourage participation by many buyers and sellers
- Quality and Efficiency Principle Quality of supply and the efficiency of various entities/institutions should improve.
- Should not be prone to Gaming The devised mechanism should not be favourable to any Participant.

- Key Steps for ABT implementation:
- Identification of Intra-State Entities (SGS, IPPs, CPP/Merchant, DISCOMs, OA Users)
- Identification of interface boundary points (interutility and intra-utility, G<>T and T<>D)
- Establishment of metering and communication infrastructure.
- Enabling forecasting, scheduling and load generation balancing systems
- Establishment of IT systems for data acquisition
- Development of Energy Accounting and Settlement systems
- Managing deviations of intra-State entities within volume cap and enabling flexible resources / demand response.

State level DSM

• DSM Status Across the States

DSM Status across the States

SAMAST Category:

- Intra state deviation settlement system for all the intra-state entities within a State/UT has been introduced only in seven (7) States. (Category-A)
- Some of the States have Partially implemented deviation settlement system for limited entities. (Group B)
- Tamil Nadu is only in Category C which has provision of determination of Fixed Charge and Energy Charge within combined utility TANGEDCO. TNERC is in a process of implementation of full DSM
- All other States are under Category D

GroupsDetailsGroup ASLDCs having the first-hand experience of all the aspects
of intra State accounting and settlement system – Delhi,
Maharashtra, Gujarat, Madhya Pradesh, West Bengal
and ChhattisgarhGroup BDeviation settlement system has been introduced for a
few intra-state entities or mock exercises have been
undertaken by SLDC – AP, Telangana, Karnataka, Kerala,
UP, Punjab, Rajasthan, Haryana, Uttarakhand, Odisha
and Meghalaya.

- Delhi 01.04.2007
- Madhya Pradesh 30.10.2009
- West Bengal 01.04.2008
- Gujarat 05.04.2010
- Chhattisgarh 01.11.2014
- Maharashtra 17.05.2007
- Andhra Pradesh & Telangana

*Map not to scale

Intra-state entity profiles and deviation management at regional periphery

State	Deviation Limit	No. of Intra- State Entities (as per SAMAST Report)	Intra-state Entity Profile
Maharashtra	250 MW	423	 SGS (10592 MW), Hydel (3332 MW), IPP (12364 MW), RE (6670 MW) ISGS share (7026 MW) Peak Demand: MSEDCL (15657 MW), Rinfra (1359 MW), TPC-D (887MW), BEST (658 MW), Railways (211 MW), MBPPL (13 MW)
Gujarat	250 MW	389	 SGS (7542 MW), Hydel (772 MW), IPP (12702 MW), RE (5437 MW) ISGS share (3872 MW) Peak Demand: DGVCL (2304 MW), UGVCL(2869 MW), PGVCL(3885 MW), MGVCL(1258 MW), T-SEC(627 MW), T-AEC (1576 MW)
Rajasthan	250 MW	275	 SGS (5794 MW), Hydel (1730 MW), IPP (3196 MW), RE (5555 MW) ISGS share (1809 MW) Peak Demand: JVVNL (5011 MW), JdVVNL (4008MW), AVVNL (3507 MW)
Tamil Nadu	250 MW	790	 SGS (5294 MW), Hydel (2182 MW), IPP (3865 MW), RE (10118 MW) ISGS share (5142 MW) Peak Demand: TANGEDCO (13775 MW),
Karnataka	200 MW	428	 SGS (4348 MW), Hydel (3600 MW), IPP (2167 MW), RE (5466 MW) ISGS share (2104 MW) Peak Demand: BESCOM(4191 MW), HESCOM(1257 MW), GESCOM(974 MW), MESCOM(718 MW), CESC(1137 MW)

Overview of State Experience: Entities, Deviation Mgmt and costs – MP Experience (since 2009)

State	Madhya Pradesh
Introduction of ABT at State level	Nov 2009
Intra-State Entity Profile	SGS (4080 MW), Hydel (3223 MW), Private generators (9390 MW), RE (3800 MW)
No. of Intra State Entities (As per SAMAST Report)	214
Peal Demand FY16-17 (in MW)	11512
Power share from CGS/ISGS (in MW)	5033 (43.76%)
Deviation limit	150 MW
Total ARR for FY 16-17 (INR Crore)	26,508
Net Deviation Charges for FY16-17 (INR Crore)	(120.56)
Total Deviation charges payable for FY 16-17 (INR Crore)	3.14
Total Deviation Charges Receivable for FY 16-17 (INR Crore)	(123.66)

Madhya Pradesh : Deviation Account (MU) FY09 to FY17

- Pre DSM and Post DSM (at state level) : significant improvement over the period
- Improvement in Balancing/Deviation management by Intra-state entities over the period
- Share of energy units handled at state periphery is ~ 35% of total energy units handled for intra-state entities

Madhya Pradesh : Deviation Amount (INR Cr) FY09 to FY17

- Pre DSM and Post DSM (at state level): Improvement in Regional UI (payable/receivables) management
- No significant cost implications for Intra-state entities.
- Causer pays principle well established.

Key Inferences of DSM Implementation

- With introduction of ABT at state level, there has been overall improvement in system operations and it has facilitated SLDCs to ensure secure and reliable grid operations while bringing in more generation in the system
- It has helped SLDC to instill forecasting and load management discipline amongst Discoms, load serving entities and OA consumers
- Cost implications for the sector is not significant as it has ensured despatch discipline amongst generators based on economic/ merit order principles. (SGS deviations receivables/payouts are not significant, Regional Deviation Cost management has improved)
- DSM framework at state level has served as a balancing mechanism within the state
- It has facilitated energy accounting and deviation settlement of transactions in transparent manner.
- DSM at State Level helps the States to manage overall Load-Generation balance
- DSM at State Level also help in maintaining Regional Load-Generation balance
- For Large scale RE integration, DSM of RE generation is necessary.
- Rules of DSM for conventional Generation and Variable RE (wind and Solar) generation needs to be different, Hence, RE DSM needs to be designed separately

Roadmap for Large Scale RE Integration

Forecasting, Scheduling and DSM Framework for Wind and Solar Generators

- Need of variable RE F&S and DSM
- Large scale RE capacity addition
- Key Regulatory Development
- Development at National level

Why RE Forecasting & Scheduling?

• To facilitate Inter-state RE Transactions, scheduling and energy accounting is pre-requisite.

5

Significant variable RE integration (Wind -60 GW and Solar-100 GW) planned by 2022

				0 /	
1	Delhi	2,762	20	Kerala	1,870
2	Haryana	4,142	21	Tamil Nadu	8,884
3	Himachal Pradesh	776	22	Puducherry	246
4	J&K	1,155		Southern Region	26,531
5	Punjab	4,772	23	Bihar	2,493
6	Rajasthan	5,762	24	Jharkhand	1,995
7	Uttar Pradesh	10,697	25	Odisha	2,377
8	Uttarakhand	900	26	West Bengal	5,336
9	Chandigargh	153	27	Sikkim	36
	Northern Region	31,120		Eastern Region	12,237
10	Goa	358	28	Assam	663
11	Guajarat	8,020	29	Manipur	105
12	Chattisgargh	1,783	30	Meghalaya	161
13	Madhya Pradesh	5,675	31	Nagaland	61
14	Maharashtra	11,926	32	Tripura	105
15	D&N Haveli	449	33	Arunachal Pradesh	39
16	Daman & Diu	199	34	Mizoram	72
	Western Region	28 410		North Eastern	1 205
17	Andhra Pradesh	9.834	35	Andaman Islands	27
18	Telengana	3,001	36	Lakshadween	/
10			50		4
19	Karnataka	5,697		All India	99,533

State-Wise share of 100GW of Solar Targets by 2022

State-wise share of 60 GW of Wind Target by 2022 11900 8600 8100 7600 8800 6200 6200 2000 600 Kanalaka Projesti Madhya Projesti Raisethan Pradest Others hen. Tarii Nadu Waharashtra Guiarat 1 elangana 14362 MW (Source: MNRE) 16820 MW 11875 MW 19526 MW < 17934 MW 11897 MW 20784 MW

Large scale integration of Variable (Solar & Wind) energy is envisaged in the coming years in the Indian Grid

- States like Karnataka, TN, Gujarat, Rajasthan, AP, PB, HR, Telangana, Maharashtra came out with their Draft /final F&S Regulations in line with FOR Model F&S Regulations, 2015.
- Out of which only Karnataka State has started the implementation of F&S Regulations from June, 2017.

CERC

- The CERC specified its F&S Framework for Solar and Wind energy at the national level through the CERC (Indian Electricity Grid Code) (Third Amendment) Regulations, 2015 and CERC (Deviation Settlement Mechanism and related matters) (Second Amendment) Regulations, 2015.
- > The CERC has amended its IEGC and DSM Regulations to incorporate this F&S Framework.
- NLDC has formulated a detailed F&S procedure defining the roles and responsibilities of the entities involved and the procedures to be followed by them in pursuance of the CERC Framework.

FOR

- FOR circulated Model Regulations on forecasting, scheduling and deviation settlement for Solar and Wind Generating Stations at the State level to the SERCs in November, 2015.
- However, various issues were raised by stake-holders regarding such Frameworks at the Regional and State levels. In order to address these issues, a Technical Committee was constituted on 18 November, 2015 by the FOR.
- The Technical Committee has proposed revisions to the FOR Model Regulations to facilitate implementation at the State level.

CERC Framework for Forecasting, Scheduling and DSM Framework for Wind and Solar Generators

• CERC Framework for RE F&S and DSM

CERC F&S and DSM Framework for Solar and Wind Generators

Sr.	Particulars	Description		
1	Objective	To maintain grid discipline and grid security as envisaged under Grid Code through commercial mechanism for deviation settlement through drawal and injection of electricity by users of the grid.		
2	Applicability	Applicable to Solar and Wind Generators which are Regional entities, whether supplying power to the distribution licensees under PPAs, or through open-access to third party consumers or for captive consumption.		
3	Forecasting	Multiple forecasting by both the RLDC/REMC and Solar and Wind Generators for better confidence level/lower Forecast Errors.		
4	Frequency of revision of schedule per day	One revision for each time slot of one and half hours starting from 00:00 hours of a particular day subject to a maximum of 16 revisions during the day.		
5	Definition of Forecasting Error	Error (%) = (Actual Generation – Scheduled Generation) / (Available Capacity) x100 Where Available Capacity is the cumulative capacity rating of the Wind turbines/Solar inverters that are capable of generating power in a given time block.		
6	Tolerance Limit	Within +/-15% band		
7	Data Telemetry	Data relating to power system output and weather provided by Solar and Wind Generator		
8	Generators Payouts linked to	 On Schedule basis (inter-state) On Actual basis (intra-state) 		
9	Deviation Pricing	 Linked to Fixed Rate/PPA (inter-state) PU INR 0.50, 1.0, 1.50 (intra-state) 		

- Error definition: [(Actual generation Scheduled generation)/Available Capacity] x 100
- Payment as per schedule @PPA Rate
- Deviation Settlement within tolerance band (+/- 15%):
- Receipt from/payment to pool @PPA rate (i.e. in effect, payment as per actuals)
- Beyond 15%, a gradient band for deviation charges is proposed as follows:

Abs Error (% of AvC)	Deviation Charge	Deviation Charge
15%-25%	110% or 90% of PPA rate	0.50/unit
25%-35%	120% or 80% of PPA rate	1.00/unit
>35%	130% or 70% of PPA rate	1.50/unit

 16 revisions allowed, one for every one-and-half-hour block, effective from 4th time-block (starting from 0.00 Hrs

Key Design parameters for Forecasting, Scheduling and DSM Framework for Wind and Solar Generators

• Key components of F&S Framework

- Forecasting
- Scheduling
- Load-Generation Balancing / Despatch management
- Absolute Error Formula
- Deviation Settlement Mechanism
- Generator Payments

F&S framework : Objective, Scope and Applicability

Implementation Aspects of State level F&S framework

Role of QCA and it's eligibility criteria	Operation- alisation of Virtual pool within the state imbalance pool	Mechanism of deviation settlement at pooling S/S level	Funding deficit of the state imbalance pool	Diverse sets of metering practises being followed across states	DSM mechanism for RE Gen. connected to STU with inter-state transactions
 a) Regulatory oversight of QCA in appropriate regulations b) Technical &Financial Criteria of QCA c) Governance mechanism of QCA d) Model Term sheet 	 a) Mechanism of Operation of virtual pool. b) Entity responsible for operating the virtual pool 	 a) Principles of de-pooling of deviation charges b) Between RE generators at the pooling S/S 	 a)Dependence on national level funds for long term and its sustainability. b)Need for creation of state level funds for funding deficit 	 a) Need for creating standardised metering points in all states b) Devising Uniform metering and energy accounting policy 	a) Treatment for RE Generators with multiple transactions at Pooling S/S level

Implementation of Intra-state DSM mechanism, Adopting Standardised IT/communication protocol, Enhanced visibility of RE generators at SLDC Level will provide a facilitative mechanism to the above

Issue-1 : Role of QCA (as per FOR Model F&S Regulations and recommendation of FOR Technical Committee)

- **Provide schedules with periodic revisions** on behalf of all the Wind/Solar Generators connected to the pooling station(s),
- **Responsible for coordination with STU/SLDC for** metering, data collection/transmission, communication.
- Undertake commercial settlement on behalf of the generators, of such charges pertaining to generation deviations including payments to the Regional/State pool accounts through the concerned SLDC.
- Undertake de-pooling of payments received on behalf of the generators from the State UI Pool account and settling them with the individual generators on the basis of actual generation.

Nos. of QCAs operating at a pooling S/S

• Multiple Pooling S/S and Aggregator

Institutional and Governance Mechanism

- Modalities of engagement
- Contracting arrangement

Technical Criteria and Financial Criteria

- Responsibility for settlement
- De-pooling principles

- Virtual Pool: Once the accounting procedures are in place, all RE generators shall be treated together as a 'virtual pool' within the State Pool. Deviations for and within this virtual pool could be settled first at the rates and methodology stipulated for wind and solar generators.
- **De-pooling:** The QCA shall also de-pool the energy deviations as well as deviation charges to each generator using one of the following options:
 - In proportion to actual generated units for each time-block for each generator;
 - o In proportion to available capacity of each generator

Preferred approach:

- SLDC shall be responsible for maintaining account of Virtual Pool for RE deviations at state level
- Virtual Pool socialise the RE Deviation at State Level which may reduce overall impact of Deviation on RE generators
- No separate Deviation accounting for Solar and Wind deviations for the purpose of 'Virtual Pool' operation at state level.
- De-Pooling by QCA at Pooling Station level based on actual energy generation of each Wind/Solar generators as actual energy generation is the only data available to all Stakeholders for verification purpose.

Issue 2 : Computation of Deviation Charges at Pooling S/S and Virtual Pool Operation ---- 2/2

Pooling Station No	Available Capacity (MW)	Schedule (MW)	Actual Injection (MW)	Deviation (MW)	Deviation (%)	Dev. Charges payable by Individual Pooling Stations (F)
	(A)	(B)	(C)	(D)	(E)	
P.S. – 1	140	100	130	30	21%	4,500
P.S 2	320	200	210	10	3%	-
P.S 3	480	300	360	60	13%	-
P.S 4	360	200	190	-10	-3%	-
P.S 5	220	150	80	-70	-32%	26,000
Grand Total	1520	950	970	180 (ABS) +20 (state)	12%	30,500

a. Mechanism of operationalisation of the virtual pool within the state imbalance pool.

b. QCA to undertake settlement of only Deviation Charges at Pooling S/S with State Imbalance Pool.

c. Settlement of Actual /Schedule injection directly between Buyer and Seller.

Pooling Station No (PS-5)	Available Capacity (MW)	Schedule (MW)	Actual Injection (MW)	Deviation (MW)	Deviation (%)	Dev. Charges payable by RE Generators (F)
(100)	(A)	(B)	(C)	(D)	(E)	V - <i>I</i>
RE Gen – 1	20		-			-
RE Gen – 2	50		10			3,250
RE Gen – 3	60		30			9,750
RE Gen – 4	40		20			6,500
RE Gen – 5	50		20			6,500
Grand Total	220	150	80	-70	-32%	26,000

a. QCA to provide energy credit statement (monthly / weekly).

- b. De-pooling of Deviation Charges amongst RE Generators on 'Actual' injection instead of 'Av. Capacity'
 - Report for Energy Credit Statement with actual injection by each RE Generator is readily available.
 - Average Available capacity over deviation settlement period (weekly or monthly) need to be ascertained.
 - Certification of Available Capacity over settlement period would be challenge.

- There will be always gap between the Deviation Charges payable on account of RE deviation at State level and the Deviation Charges to be collected by RE generators based on the fixed charge as proposed in the Regulations.
 Different entires are discussed as former sting the shortfall.
- Different options are discussed as for meeting the shortfall.

FOR Model F&S Regulations

Key Considerations:

- Model F&S Regulations envisages that, PSDF/NCEF Funding would by made available for meeting shortfall
- State specific provision of PSDF/NCEF funding is required to consider such option in the Regulations.

 Key Design Points
 ➤ Long term availability of Funding needs to be ensured

SLDC Fees and Charges

Key considerations

- The Shortfall may be passed on through the SLDC's ARR approval process.
- The Commission needs to make specific provision for the same in SLDC ARR
- The RE deviation impact passed on to all the consumers in the State.

Key Design Points

➢In case of Inter-state transactions, the Deviation charges of Generators will be passed on to the consumers of the Sate, but power will be utilised by consumers out of the sate.

Zero- Sum approach

Key consideration

- The Deviation on account of RE needs to be accounted separately and to be collected from RE generators only
- Shortfall in Deviation Charges will be apportion back to all RE generators within the Pooling station

Key Design Points:

- Zero-Sum ensures long term sustainability of DSM mechanism
- Cast the responsibility on RE generators to maximise the efforts for accurate Forecasting and Scheduling

Issue-5: Standard Metering and Accounting practices

Suggestion:

- All the parameters, namely, Schedule Generation, Actual Injection, Deviations, Deviation Charges shall be monitored and accounted for within State Imbalance Pool with reference to Interconnection Point at pooling substation.
- Establish Communication infrastructure and online real time data/information sharing facility to share requisite data/information with SLDC.

- **Payments to RE Generators** are made on the following basis:
 - Inter-state transactions- Scheduled energy basis
 - Intra-state transactions- Actual energy basis

- Rates for deviation settlement for RE generators undertaking inter-state transaction is based percentage of PPA Rate or APPC (i.e. 90%, 80% and 70%) in steps.
- Rates for deviation settlement for RE generators undertaking intra-state transaction is based on fixed amount (Rs 0.50, Rs 1.00 and Rs 1.50/kWh) in steps
- **Deviation Charge settlement** on the following basis:
 - Inter-state transactions:
 - For Over-injection Receipt from DSM Pool
 - For Under-injection Payment into DSM Pool
 - Intra-state transactions:
 - For Over-injection Payment into DSM Pool
 - For Under-injection Payment into DSM Pool

- Error definition: [(Actual generation Scheduled generation)/Available Capacity] x 100
- Payment as per schedule @PPA Rate
- Deviation Settlement within tolerance band (+/- 15%) or (+/- 10%):
 - Receipt from/payment to pool @PPA rate (i.e. in effect, payment as per actual)
- Beyond 15%, a gradient band for deviation charges is proposed as follows:

Abs Error (% of AvC)	Deviation Charge	Deviation Charge
15%-25%	110% or 90% of PPA rate	0.50/unit
25%-35%	120% or 80% of PPA rate	1.00/unit
>35%	130% or 70% of PPA rate	1.50/unit

• 16 revisions allowed, one for every one-and-half-hour block, effective from 4th time-block.

Key Issue for Discussion

- Some RE generators connected to a particular pooling S/S may undertake intra-state transaction while others may wish to undertake inter-state transactions
- As schedules are prepared at pooling S/S level, carrying out deviation settlement poses challenge.
- Rules for Treatment for such transactions needs to be defined.

Suggestions:

- All inter-state generators at a pooling S/S may be connected through separate feeder.
- Deviations for Inter-State transactions at Pooling S/S to be accounted for separately.
- Virtual Pool Accounting at State level to exclude such inter-State transactions
- SLDC/State Energy Account to provide separate Energy/DSM accounts for inter-State and intra-state transactions to QCA.
- QCA to separately settle Deviation Charges with RE Generators for inter-State and intra-State transactions.
- Reference rate for Deviation Charge computation of inter-State transactions may be APPC of host State.
- In case of shortfall in amount at QCA level or for variation in weekly/monthly cycle, QCA may set rules for pro-rata settlement of inter-State and intra-state transactions of RE Generator(s).

RE Generators, QCA and SLDC are key entities in implementation of F&S and DSM Regulations.

Compliance of F&S Regulations

CA is single point contact for SLDC for each PSS

FOR Model F&S Framework for Solar and Wind Generators

Sr.	Particulars	Description
1	Objective	Facilitate large-scale grid integration of Solar and Wind Generating Stations while maintaining grid stability and security
2	Applicability	All Solar and Wind Generators connected to the State grid, including those connected via Pooling Sub-Stations, and selling power within or outside the State
3	Forecasting	Solar and Wind Generator or QCA, or forecast by the MSLDC to be accepted
4	Frequency of revision of schedule per day	Weekly and day-ahead, with maximum 16 revisions during a day.
5	Definition of Forecasting Error	The formula for computation of the Error is: 100x {(Actual Generation- Scheduled Generation)/ Available Capacity}
6	Tolerance Limit	 10% for new Solar and Wind Generator. <=15% for existing Solar and Wind Generator
7	Data Telemetry	Data relating to power system output and weather provided by Solar and Wind Generator
8	Generators Payouts linked to	In proportion to actual generated units or available capacity
9	Deviation Pricing	 Linked to Fixed Rate/PPA (inter-state) PU INR 0.50, 1.0, 1.50 (intra-state)

Forecasting & Scheduling Regulations by States: Updated (as on 19 April, 2018)

SERCs	Status	Date of Notification		
Andhra Pradesh ERC	Final	21 August, 2017 (Commercial settlement 1 st July,2018)		
Chhattisgarh ERC	Final (Under DSM)	07 November 2016		
Gujarat ERC	Draft	13 January 2017		
Jharkhand ERC	Final	08 December 2016		
Karnataka ERC	Final	31 May 2017		
Madhya Pradesh ERC	Draft	25 May 2017		
Rajasthan ERC	Final	14 September, 2017 (Comm. Settlement 1 st January,2018)		
Tamil Nadu ERC	Draft	27 January 2018		
Tripura ERC	Final	24 June 2017		
Uttarakhand ERC	Final (Under DSM)	06 February 2017		
Joint ERC (Manipur & Mizoram)	Final	09 August 2016		
Haryana ERC	Draft	17 January, 2018		
Punjab ERC	Draft	17 January, 2018		
Telangana ERC	Draft	19 February 2018		
Maharashtra ERC	Draft	31 March,2018		
Orissa ERC	Draft	23 September 2015		
Einal Natification, <mark>9 States, Draft, 9 States</mark>				

Final Notification: 8 States, Draft : 8 States

Way forward for Large Scale RE Integration (evolution of framework in continuum . . .)

Idam Infrastructure Advisory Pvt. Ltd.

Mumbai (Regd. Office):

801, Crystal Plaza, 158, CST Road, Kalina, Santacruz (E), Mumbai – 400 098 Tel: +(91) 22 4057 0200

Delhi:

704, Bhikaji Cama Bhawan, Bhikaji Cama Place, New Delhi - 110066 Tel: +(91) 11 2616 5220

Contact:

Balawant Joshi Ajit Pandit

+(91) 98214 21630 +(91) 98211 08222

Email: contact@idaminfra.com